

TECHNICAL NOTE

Date: 22 September 2021

File Ref: SG/VL/P21-2315/01TN Vol. 1 of 3

Project: Land at Impington, Histon, Cambridgeshire

Subject: Summary of Flood Risk and Drainage Matters

1.0 INTRODUCTION

- 1.1 This report provides information with respect to Flood Risk and Drainage matters, by Create Consulting Engineers Ltd on behalf of Cirrus Impington Ltd, and proposes surface water drainage options whilst clarifying whether an outfall to the adjacent ditch can be achieved for the above site, located to the south of Villa Road, Impington, Cambridge, CB24 9NZ.
- 1.2 This report will inform strategic planning at the Site and will act as a basis for housing and layout design, if feasible.
- 1.3 A record of correspondence conducted by Create Consulting Engineers Ltd on behalf of the client, including information sources and consultation requests where appropriate, can be found in Table 1.1 below.

Consultee	Form of Consultation	Topics Discussed and Actions Agreed
Anglian Water	Request for Asset	Asset plans were requested in order to inform the
Developer Services	Plans	foul and surface water drainage strategies.
Team		
		The asset plans (Appendix A), dated 16 th June 2021,
		show surface and foul water assets in the vicinity of
		the Site as outlined in Section 2.0 below.
Cambridgeshire County	Pre-Application	The LLFA have confirmed that in this instance the
Council Lead Local Flood	consultation and	fluvial modelling carried out can act as a proxy for
Authority (LLFA)	subsequent email	the surface water flood mapping given the nature
	correspondence	of the catchment means the fluvial modelling is

Consultee	Form of Consultation	n Topics Discussed and Actions Agreed	
		more representative of the likely flood extents.	
		Correspondence is included in Appendix E.	

Table 1.1 Summary of Consultation

Sources of Information

- 1.4 As part of this study, the following documents have been obtained and reviewed and are appended to this report:
 - Cambridgeshire County Council Preliminary Flood Risk Assessment (PFRA) (Hyder, 2011);
 - Cambridgeshire County Council Local Flood Risk Management Strategy (Cambridgeshire County Council, 2015);
 - Cambridgeshire Flood and Water Supplementary Planning Document (Cambridgeshire County Council, 2016);
 - Surface Water Drainage Guidance for Developers (Cambridgeshire County Council, 2019);
 - Cambridgeshire County Council Surface Water Management Plan (SWMP) Countywide Update (Hyder, 2014);
 - Cambridge and Milton Surface Water Management Plan—Detailed Assessment and Options Appraisal Report (Hyder & Edenvale Young, 2011);
 - South Cambridgeshire Local Plan (South Cambridgeshire District Council, 2018);
 - South Cambridgeshire and Cambridge City Level 1 Strategic Flood Risk Assessment (SFRA) (WSP, 2010);
 - Anglian Water Foul Water Asset Plans (attached);
 - King's Gate Site Plan (attached);
 - Topographical Survey Drawings 2219-545-SU01 to 2219-545-SU16 (BB Surveys Ltd, March 2017, attached);
 - Previous Create Consulting Engineers Ltd works relating to hydraulic modelling of the Public Drain.

2.0 SITE SETTING & EXISTING DRAINAGE

Location and Topography

- 2.1 The Site comprises approximately 6.62 ha of greenfield land immediately bounded by Villa Road to the north, residential development to the east and agricultural fields to the south and west. Further residential development is situated north of Villa Road, north east of the Site, and agricultural fields to the north west. The centre of the Site lies at Ordnance grid reference 543729E and 262621N, with its boundary shown on Figure 1.1.
- 2.2 LiDAR¹ data for the area indicates that the Site slightly falls towards the Public Drain crossing through the Site, however, generally the ground level is relatively consistent. Levels range from circa 10.76 mAOD to 13.41 mAOD in minor areas in the north west, however, for the majority of the Site levels are indicated around 11.0 mAOD. Invert levels taken from the appended survey (Drawings 2219-545-SU01 to 2219-545-SU16) of the Public Drain produced for the Watercourse Hydraulic Modelling for NIAB, further detail below, indicate levels range between 9.70 mAOD and 10.0 mAOD.

Hydrology

Surface Watercourses

2.3 The Public Drain crosses through the Site, towards the west, draining from south to north before reaching its confluence with the Beck Brook, approximately 2.60 km north west of the Site (Figure 2.1).

<u>Groundwater</u>

2.4 The Site is underlain by a Secondary A superficial deposit aquifer², however, does not lie within a Groundwater Source Protection Zone, as shown by the online mapping (DEFRA, accessed July 2021).

Artificial Water Bodies

2.5 The nearest artificial water bodies to the Site include a pond situated approximately 153 m to the north east, an agricultural reservoir approximately 810 m to the south west and Cawcutts Lake approximately 900 m to the south east.

¹ Department for Environment Food and Rural Affairs (DEFRA) Data Survey Website. (2020). *EA LiDAR Data*. [Online]. Available at: <u>https://environment.data.gov.uk/DefraDataDownload/?Mode=survey</u>. (Accessed July 2021).

² Department for Environment and Rural Affairs (DEFRA) Magic Website., 2010. [Online]. *Environment Agency Aquifer Designation Data*. Available at: <u>https://magic.defra.gov.uk/MagicMap.aspx</u> [Accessed July 2021].

Existing Water Supply and Drainage Infrastructure

2.6 Anglian Water foul and surface water assets are located in the area surrounding the Site with a 9 inch foul sewer running beneath South Road to the east of the Site and continuing north, serving residential development associated with Impington. Further foul sewer connections and a surface water network are present serving residential areas to the north of Villa Road.

3.0 FLOOD RISK ASSESSMENT

Scope of Work

- 3.1 The scope of this Technical Note considers the following:
 - Flood risk to the development from all sources;
 - Potential for the design, construction and operation of the Site to increase the risk of flooding to neighbouring properties;
 - Climate change;
 - Residual flood risks.
- 3.2 The approach is consistent with the NPPF¹ and its associated Technical Guidance² along with the requirements of local planning policy.

Flood Risk to the Proposed Development

Flood Risk from Fluvial/Tidal Sources

- 3.3 EA flood mapping³, as shown on Figure 3.1, indicates that the majority of the Site is located within Flood Zones 2 and 3 and a minor area adjacent to the eastern boundary located within Flood Zone 1. Flood Zone 2 comprises land assessed as having between a 1 in 100 (1%) and 1 in 1000 (0.1%) annual probability of fluvial flooding in any one year, whereas Flood Zone 3 is classified as land which has a 1 in 100 (0.5%) or greater annual probability of fluvial flooding. Flood Zone 1 is described within the NPPF Technical Guidance as having less than 1 in 1000 (<0.1%) probability of flooding from rivers or the sea in any one year.
- 3.4 The development proposals have not yet been finalised, nonetheless, given the location of the Site within Flood Zones 2 and 3, the Sequential and Exception Tests may need to be undertaken for the purposes of the proposed development. However, these are beyond the scope of this report and it is assumed they will be provided as separate submissions as part of the planning application if the scheme is deemed viable.
- 3.5 Review of the PFRA and SWMP identified no historic records of flooding from this source affecting the Site itself or surrounding area. However, the SWMP highlights a record of fluvial flooding (4-10 years ago lasting 1-2 days) in Impington.

³ Environment Agency, 2020. Flood Map for Planning (Rivers and Sea) - Flood Zone 2 and Flood Zone 3. [Online]. Available at: <u>https://data.gov.uk/dataset/cf494c44-05cd-4060-a029-35937970c9c6/flood-map-for-planning-rivers-and-sea-flood-zone-2</u> [Accessed July 2021]

Flood Risk from Surface Water

- 3.6 The EA Surface Water Flood Maps (Figure 3.2) suggest that the majority of the Site is at a 'High' to 'Low' risk of surface water flooding from extreme rainfall which is defined as having between a 1 in 30 (3.3%) and 1 in 1000 (0.1%) chance of flooding, with a minor area of 'Very Low' risk to the north west, associated with a shallow topographical high.
- 3.7 Given the surface water flood risk extent closely follows the fluvial extent as a result of the Public Drain which passes through the Site, it is proposed that the updated surface water modelling for the 1 in 100 year + 35% CC and 1 in 100 year + 65% CC events relating to fluvial flood risk be used as a proxy for this. Further detail can be found below, pending consultation with the Lead Local Flood Authority.
- 3.8 Flood depths for the High (1 in 30 year) and Medium (1 in 100 year) risk scenarios are shown by available EA mapping to generally remain below 300 mm with minor areas reaching up to 600 mm (Figures 3.3-3.4). For the Low risk (1 in 1000 year) scenario flood depths across the majority of the Site reach up to 600 mm with the extent along the Public Drain reaching up to over 1200 mm. The area to the north of the western section of the Site, along with very minor areas within the Site reach up to 900 mm.
- 3.9 Review of the PFRA and SWMP identified no historic record of flooding from this source affecting the Site itself, however, the SFRA identified a record of flooding from surface water at Villa Road on 9th September 2005. Further to this the SFRA notes various records of surface water flooding in other areas of Impington and Histon in 2001 and 2005 and the SWMP notes a record from 2008 in Histon and records from 2005 and 2006 in Impington.
- 3.10 Surface water flood risk has been considered below as part of the fluvial modelling in that the fluvial modelling is considered to provide a suitable proxy for the surface water flood risks posed and so the above risks should not be considered as a true representation of what could occur at the site.
- 3.11 Flooding from surface water remains a residual risk due to the potential for rainfall to exceed the design standard of the proposed drainage system and the effects of climate change on the frequency and severity of rainfall events. The initial drainage layout proposed (Figure 4.1) sets out a preliminary option of providing sufficient sustainable drainage systems that if utilised will ensure that there are no significant changes in surface water runoff from the Site compared to the existing situation (for all rainfall events up to the 1 in 100 year rainfall event including an allowance for climate change). Further detail can be found in Section 4.0 below.

Fluvial Flood Modelling

Estimate of Flows in Watercourse

- 3.12 Hydraulic Modelling has previously been undertaken for the Public Drain in relation to another site (referred to as NIAB) further north west, using the HEC-RAS software. The modelling was requested by the EA with regard to the requirement for a site specific hydraulic analysis in order to determine the flood risk to the proposed development with an allowance for climate change (CC). This exercise was carried out by Create Consulting Engineers Ltd in 2017 and has been used here to assess the impact of fluvial flooding on the site. It has been confirmed with the LLFA that this can be used as a proxy for surface water flood risk too given the modelling better represents how the catchment reacts to rainfall compared to the methodology for the online surface water flood mapping.
- 3.13 With reference to the Watercourse Hydraulic Modelling Report (Create Consulting Engineers Ltd., 2017, attached ad Appendix D), the Public Drain is understood to be fed by a catchment 3.27 km² in size to the south, inferred from the FEH Web Mapping Service and verified against watershed analysis using GRASS software and Environment Agency LiDAR data.
- 3.14 There is no gauged flow data available for the Public Drain and therefore the flow regime has been estimated using both WINFAP 4 and ReFH2 with catchment descriptors extracted from the FEH Web Mapping Service. The median flow (QMED) for the study catchment (index flood) was calculated as 0.281 m³/s from the catchment descriptors using WINFAP 4. Using the ReFH2 program and the inputs from the FEH online web service, estimates were obtained for various return periods.
- 3.15 WINFAP 4 uses flow records from either a single reliable gauged site in the same catchment or from a number of other gauged sites in hydrologically similar catchments to form a pooling group which is subjected to a statistical analysis. Following this the flood growth curve and flood frequency curve generated by the analysis are used to calculate a range of flood flows. This was carried out for the watercourse using the inputs from the FEH online web service. A default urban adjustment factor was applied (Urbext2000). A sensitivity analysis of the urban adjustment (URBext2000) factor was undertaken. The percentage of impermeable area was determined using aerial imagery and it was concluded that the percentage of impermeable area was approximately half of the default value presented by Urbext2000. The default Urbext2000 value was however utilised for calculating flows as this value was more conservative than the calculated value.
- 3.16 A sensitivity analysis was carried out to determine the impact of using a bankfull flow estimate for QMED. WINFAP 4 has the functionality to produce a bankfull estimate for QMED. The bankfull QMED was calculated using both the catchment descriptors and channel dimensions as an input into the pooling analysis. The channel was measured in several places and an average Bankfull Channel Width of 5.95 m was used.

3.17 To provide a conservative estimate of the flows in the Public Drain, peak flows from the bankfull analysis will be utilised in the flood model. Full details are included in Appendix D, however Table 3.1 below provides a summary of these.

Return Period (Years)	Flows Calculated from Bankfull Analysis (in WINFAP 4, m ³ /s)	+25% Climate Change (m³/s)	+35% Climate Change (m ³ /s)	+65% Climate Change (m³/s)
2	0.63	0.78	0.85	1.040
5	0.87	1.09	1.18	1.44
10	1.06	1.32	1.43	1.75
25	1.33	1.66	1.79	2.19
50	1.57	1.96	2.11	2.59
100	1.84	2.30	2.48	3.04
200	2.16	2.69	2.91	3.56
500	2.65	3.31	3.58	4.37
1000	3.10	3.87	4.18	5.12

 Table 3.1: Flows calculated using bankfull analysis (in WINFAP) to include 25%, 35% and 65%

 climate change allowances

Climate Change Allowances

- 3.18 To incorporate the potential future effects of climate change the bankfull flows have been increased accordingly, as per Table 3.1 above.
- 3.19 For the purposes of this report, the original modelling has been utilised and updated in order to include the additional climate change allowances required for the residential land use vulnerability class. The proposed development is classified as 'more vulnerable' use according to the NPPF. Based on the EA's guidance the 'higher central' (35%) and 'upper end' (65%) allowances for the Anglian Basin 2070-2115 will be added on to the flows based on a development design life of 100 years. The 1 in 1000 year event will also be considered to classify Flood Zone 2.
- 3.20 Since the production of our draft report it should be noted the national climate change allowances have been updated, however given the minimal impacts the above have (as summarised below) it is considered that they represent a worst case, particularly given that this modelling is being considered as a proxy for the surface water flood mapping.

<u>Methodology</u>

3.21 The hydraulic model has been developed to estimate the flood extent of the Public Drain for the 1 in 100 year event. As the channel is both small and relatively straight a one dimensional model was chosen to represent the channel which has been constructed using HEC-RAS 6.0. A 700 m stretch of the drain ending at the guided busway at its northern extent was chosen

to best represent water levels at the site. This reach comprises four bridges and one culvert. The model was run in a steady state scenario by using a constant flow input for the 1 in 100 year event (as the pooling analysis generates a peak flow only).

- 3.22 A detailed topographical survey (appended) was undertaken on 7 March 2017 (Drawings 2219-545-SU01 2219-545-SU16). 42 channel cross sections at 20 m intervals were generated using the topographical survey as well as a 3D surface.
- 3.23 The following surface roughness assumptions have been made for the channel and floodplain based on a combination of site photographs and google earth imagery. The values have been obtained from the HEC-RAS reference manual (US Army Corps Engineers, 2016). The Manning's 'n' values are shown in Table 3.2 below.

Geometry	Manning's 'n'	n' Description		
Channel	0.35	Clean, straight, full, no rifts or deep pools but more stones and weeds		
Floodplain 0.04		Mature field crops		

Table 3.2: Manning's 'n' values used for the channel and floodplain in HEC-RAS

3.24 The four bridges have been modelled using the dimensions, soffit levels, and invert levels provided within the topographical survey. The bridges are clear span with no piers or edges so it was assumed the surface roughness would remain the same as the channel. The culvert (passing beneath the guided busway) located in the northern part of the model has been modelled as an arched culvert. The following surface roughness assumptions have been made and the Manning's 'n' values are shown in Table 3.3 below

Geometry	Manning's 'n'	Description		
Bridges	0.35	Remained the same as channel		
Culvert	0.015	Culvert with some debris		

 Table 3.3: Manning's 'n' values used for the channel and floodplain in HEC-RAS

3.25 Contraction and expansion coefficients for the bridges and culverts were obtained from the HEC-RAS manual as shown in Table 3.4 below.

Geometry	Contraction Coefficient	Expansion Coefficient	Description
Bridges	0.3	0.5	Typical bridge
Culvert	0.6	0.8	Abrupt transition

 Table 3.4: Contraction and expansion values used in HEC-RAS

3.26 A bed slope of 0.0008 was used throughout the length of the model, which was calculated (from the topographic survey) as the average gradient of the channel along the section in question.

3.27 Full details on the modelling methodology are included in Appendix D.

<u>Results</u>

- 3.28 For the 1 in 100 year plus 35% climate change scenario, levels in the channel ranged from 11.24 mAOD to 11.40m mAOD between nodes 440 to 180 adjacent to the Site. Freeboard along the left bank ranges from 20 mm to 550 mm and along the right bank it ranges from 140 mm to 540 mm.
- 3.29 For the 1 in 100 year plus 65% climate change scenario a small amount of overtopping occurs on the left bank which protrudes into the western part of the site, as shown on Figure 3.6. Design flood levels in this locality are 11.45 mAOD with depths reaching 300 mm.
- 3.30 When assessing the 1 in 1000 year event it is clear this follows a very similar flood extent to the 1 in 100 year plus 65% climate change extent. Levels in this scenario are on average 13 mm higher than the mapped extent shown on Figure 3.6.
- 3.31 As mentioned earlier in the report, with reference to the 'High' risk of flooding from surface water across the Site it is considered (and has been agreed with the LLFA) that the above fluvial flood modelling be used as a proxy for the surface water food risk, as the main source of flooding for both is the Public Drain.
- 3.32 With regards to sensitivity testing of the model full details are included in Appendix D.

4.0 INITIAL FOUL AND SURFACE WATER DRAINAGE STRATEGY

Foul Water Drainage

- 4.1 Anglian Water (AW) are the statutory sewerage undertaker for the area and responsible for the operation and maintenance of public sewers serving Impington. Foul and surface water sewers present in the immediate vicinity of the Site are shown within sewerage asset mapping provided by AW (Appendix A) and comprise a 9 inch foul sewer running beneath South Road to the east of the Site and continuing north, serving residential development associated with Impington. Further foul sewer connections and a surface water network are present serving residential areas to the north of Villa Road.
- 4.2 It is suggested that the proposed development be connected to the AW foul sewer network to the north east of the Site at Villa Road MH9601. However, a Pre-Planning Enquiry will be required to be submitted to Anglian Water at the planning stage in order to confirm sewer capacity.

Surface Water Drainage

4.3 The Site has been split into 'Area 1' located to the east and 'Area 2' located to the west given it is intersected by the Public Drain, making two distinct catchments for surface water drainage. Calculations included in Appendix B estimate the current Greenfield runoff rates from the Site for Areas 1 & 2, as shown in Tables 4.1-4.2 below. These runoff rates are presented as equivalent rates for the assumed 60% impermeability used in the attenuation sizing calculations below.

Rainfall Event	Greenfield runoff rate (I/s)		
Q 1 year	3.5		
Q 30 year	9.9		
Q 100 year	14.8		

Table 4.1. Greenfield Runoff Rates for factored impermeable area only (60%) from Area 1
for Various Rainfall Events.

Rainfall Event	Greenfield runoff rate (I/s)		
Q 1 year	1.0		
Q 30 year	2.8		
Q 100 year	4.2		

Table 4.2. Greenfield Runoff Rates for factored impermeable area only (60%) from Area 2for Various Rainfall Events.

- 4.4 Surface water flows should be attenuated using SUDS such that flows from the Site are restricted to equivalent greenfield rates (with an allowance for an increase in rainfall intensity of 40% due to climate change) prior to discharge into the Public Drain.
- 4.5 The following provides a summary of the proposed method of management and disposal of surface water runoff from the Site:
 - Two separate attenuation basins positioned in Area 1 and Area 2 (see Figure 4.1), however, the exact location of these are to be confirmed, however Figure 4.1 provides indicative locations which are positioned beyond the fluvial flood zones. Confirmation on these positions with regards to the surface water flood risks posed is awaited from the Lead Local Flood Authority.
 - A flow control restricting runoff to the equivalent greenfield run off rate of 3.5 l/s for Area 1 and 1.0 l/s for Area 2 will be included prior to the discharge into the Public Drain, via two surface water outfalls using gravity connections. These will restrict flows to this level for all events up to and including the 1 in 100 year plus 40% climate change event.
 - Micro Drainage calculations (Appendix C) indicate that a basin with 3478.7m³ of storage is required for Area 1 and a basin with 986.1m³ of storage for Area 2. The calculations assume a maximum basin depth of approximately 1.3 m for both Areas 1 and 2 (including an allowance for an appropriate freeboard) with 1 in 3 side slopes, which equates to an approximate surface area of 4141.3 m² for Area 1 and 1322.2 m² for Area 2. This allows for drainage from the Site to reach the basin with an appropriate cover. The area should be considered to be approximate at this stage, calculations undertaken as part of the detailed design will confirm the exact pond area and levels as the design progresses.
 - The 3.5 l/s and 1.0 l/s restricting flow rates are equivalent to the 1 in 1 year greenfield runoff rate for a 60% impermeability factor of the anticipated developed area of the Site.
 - An allowance for future urban creep has also been included, within the above calculations, of 10% of the potential impermeable area of the site.
 - In line with South Cambridgeshire and Cambridgeshire County SUDS requirements a full treatment train should be included upstream of the attenuations basins, which themselves should be online and appropriately designed such that the SUDS Manual treatment criteria are met. This treatment train could include:
 - Tanked permeable paving for all private drives and roadways, with a positive overflow to the attenuation basins;
 - Swales positioned to one or either side of main adoptable roadways collecting and treating run-off and transmitting flows to the attenuation basins. This is particularly relevant to Area 1 basin where swales will be required to keep pipe runs as shallow as possible so they are able to enter the basin above the invert level.
 - Green roofs for all flat roofs where viable;

- Subject to soakage testing at the planning stage, there may be potential for infiltration as cellular soakaways or permeable paving where viable.
- The SUDS manual provides guidance, in Table 26.2, on the expected pollutant loads for the various impermeable surfaces relevant to this site. These include residential roofs/roads which have pollution hazard indices of 0.2 and 0.5 respectively and Total Suspended Solids concentrations of 0.2 and 0.4 for Metals and 0.05 and 0.4 for Hydrocarbons. The above primary treatment train, if designed and linked appropriately, is expected to provide treatment over and above that based on the relevant indices provided within the SUDS Manual.

5.0 SUMMARY

- 5.1 Create Consulting Engineers Ltd have put forward a preliminary Flood Risk Assessment and drainage scheme for a proposed residential development on Land at Impington, Histon, Cambridgeshire.
- 5.2 Flood modelling has shown that by and large the site remains unimpacted by fluvial flood events with updated allowances for climate change. The Lead Local Flood Authority have been consulted to understand whether they are willing to accept this modelling as a proxy for the surface water flood extents which severely impact the site. This has been confirmed (Appendix E) due to the nature of the catchment being best represented by the above modelling study.
- 5.3 With regards surface water drainage it is proposed the Site will drain wholly via controlled outfall, therefore flows in the local drainage network will not be significantly affected as runoff will be restricted to as near to greenfield runoff rates as practicable. Indicative attenuation basin sizes and locations have been provided to demonstrate required land take.
- 5.4 Foul drainage in the local area has been assessed and connections appear to be available in close proximity to the site.
- Written by: Sophie Gadsdon, BSc (Hons), GradCIWEM
- Approved by: Graham Sinclair, BSc (Hons), MSc, DIC, C.WEM, MCIWEM

Enclosed

Figures:

1.1	Site Location Plan
2.1	Identified Local Watercourse Map
3.1	EA Fluvial/Tidal Flood Zone Map
3.2	EA Risk of Flooding from Surface Water Extent Mapping
3.3	EA Surface Water Flood Depth Map 1 in 30 Year Event (3.3%)
3.4	EA Surface Water Flood Depth Map 1 in 100 Year Event (1.0%)
3.5	EA Surface Water Flood Depth Map 1 in 1000 Year Event (0.1%)
3.6	Modelled 1 in 100 Year + 65% Climate Change Flood Extent
4.1	Initial Surface Water Drainage Layout

Appendices:

А	Anglian Water Foul Water Asset Plans
В	Greenfield Run-off Calculations
С	Micro Drainage Calculations
D	Create Consulting Engineers Ltd Hydraulic Modelling Report
E	Lead Local Flood Authority Correspondence

Plans:

Kings Gate Site Plan;

Topographical Survey Drawings 2219-545-SU01 to 2219-545-SU16 (BB Surveys Ltd, March 2017).

References:

- I. BGS. Geology and borehole records. [Online]. Available at: <u>www.bgs.ac.uk/geoindex.</u> (Accessed July 2021).
- II.British Geological Survey (BGS), 2021. Groundwater Flooding Susceptibility AStGWf Dataset. [Online].Availableat:https://data.gov.uk/dataset/f0329412-b46a-49b0-9f30-abef8c4b807e/groundwater-flooding-susceptibility (Accessed July 2021).
- III. Cambridgeshire County Council (2011). Preliminary Flood Risk Assessment. Hyder.
- IV. Cambridgeshire County Council (2015). *Local Flood Risk Management Strategy*. Cambridgeshire County Council.
- V. Cambridgeshire County Council (2016). *Cambridgeshire Flood & Water SPD.* Cambridgeshire County Council.
- VI. Cambridgeshire County Council (2019). *Surface Water Drainage Guidance for Developers.* Cambridgeshire County Council.
- VII. Cambridgeshire County Council (2014). *Surface Water Management Plan Countywide Update*. Hyder.
- VIII. Cambridgeshire Flood Risk Management Partnership (2011). *Cambridge and Milton Surface Water Management Plan—Detailed Assessment and Options Appraisal Report.* Hyder, Edenvale Young.

- IX. Cambridge and South Cambridgeshire Council (2010). South Cambridgeshire and Cambridge City Level
 1 Strategic Flood Risk Assessment. WSP.
- X. Cambridge and South Cambridgeshire Council (2011) Cambridge and Milton Surface Water Management Plan. Hyder & Edenvale Young.
- XI. Department for Environment and Rural Affairs (DEFRA) Magic Website., 2010. [Online]. *Environment Agency Aquifer Designation Data*. Available at: <u>https://magic.defra.gov.uk/MagicMap.aspx</u> [Accessed September 2021].
- XII. Department for Environment Food and Rural Affairs (DEFRA) Data Survey Website. (2020). EA LiDAR Data. [Online]. Available at: <u>https://environment.data.gov.uk/DefraDataDownload/?Mode=survey</u>. (Accessed September 2021).
- XIII. Environment Agency Fluvial/Tidal Flood Maps, Surface Water, and Reservoir Flood Mapping. [Online].
 Available at: <u>https://flood-warning-information.service.gov.uk/long-term-flood-risk/map</u> (Accessed September 2021).
- XIV.
 Environment Agency, 2021. Flood Map for Planning (Rivers and Sea) Flood Zone 2 and Flood Zone 3.

 [Online].
 Available at: https://data.gov.uk/dataset/cf494c44-05cd-4060-a029-35937970c9c6/flood-map-for-planning-rivers-and-sea-flood-zone-2 (Accessed September 2021).
- XV. Environment Agency., 2020. Flood Risk Assessments: Climate Change Allowances. [Online]. Available
 at: <u>https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances</u> (Accessed
 September 2021).
- XVI.
 GOV.UK. National Planning Policy Framework Planning Practise Guidance. [Online]. Available from: http://planningguidance.planningportal.gov.uk/ (Accessed September 2021).
- XVII. South Cambridgeshire District Council (2018). South Cambridgeshire Local Plan. South Cambridgeshire District Council.

FIGURES

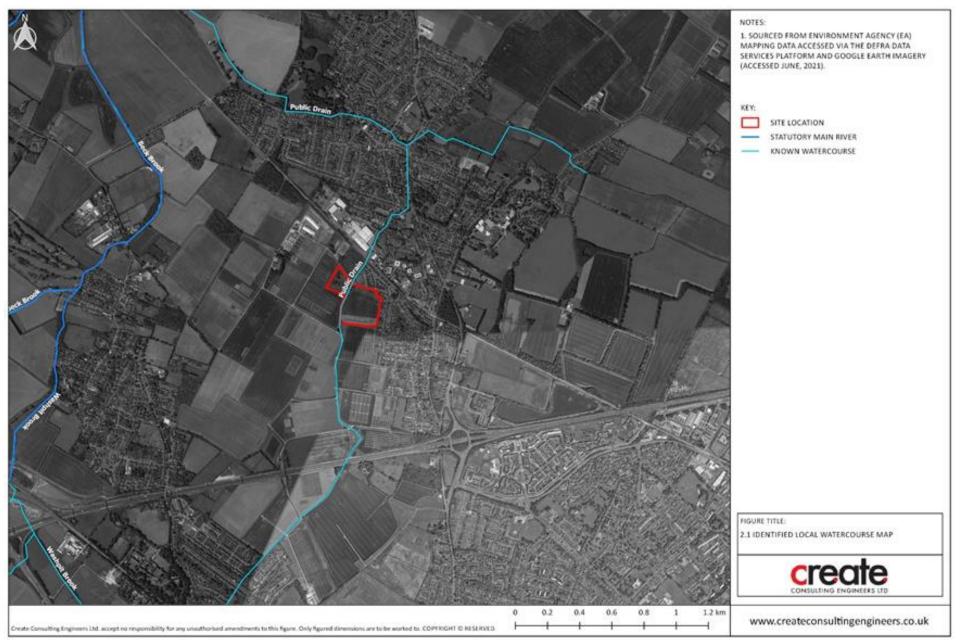


Figure 2.1: Identified Local Watercourse Map

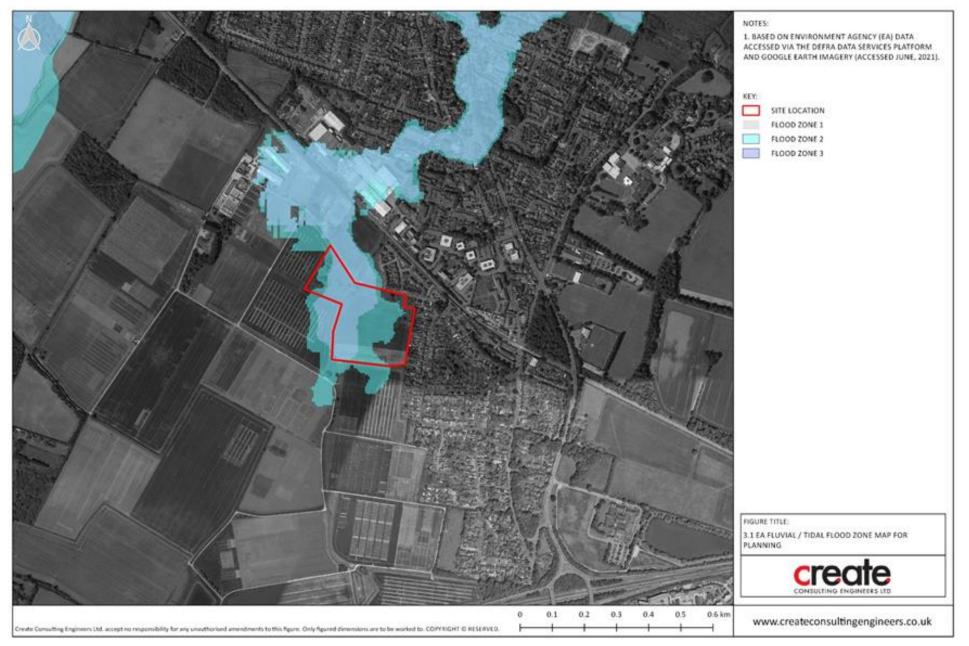


Figure 3.1: EA Fluvial/Tidal Flood Zone Map

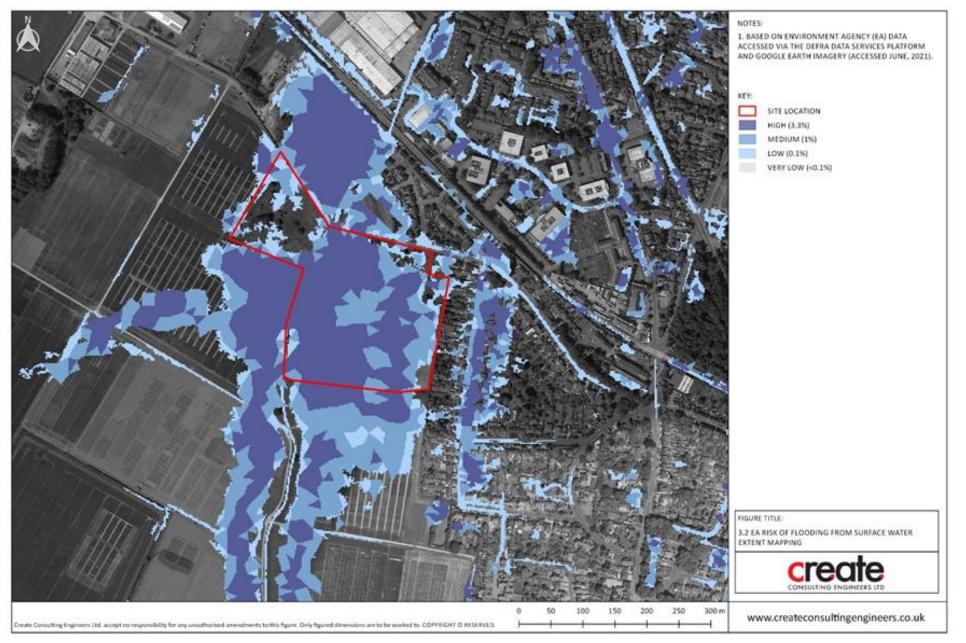


Figure 3.2: EA Risk of Flooding from Surface Water Extent Mapping

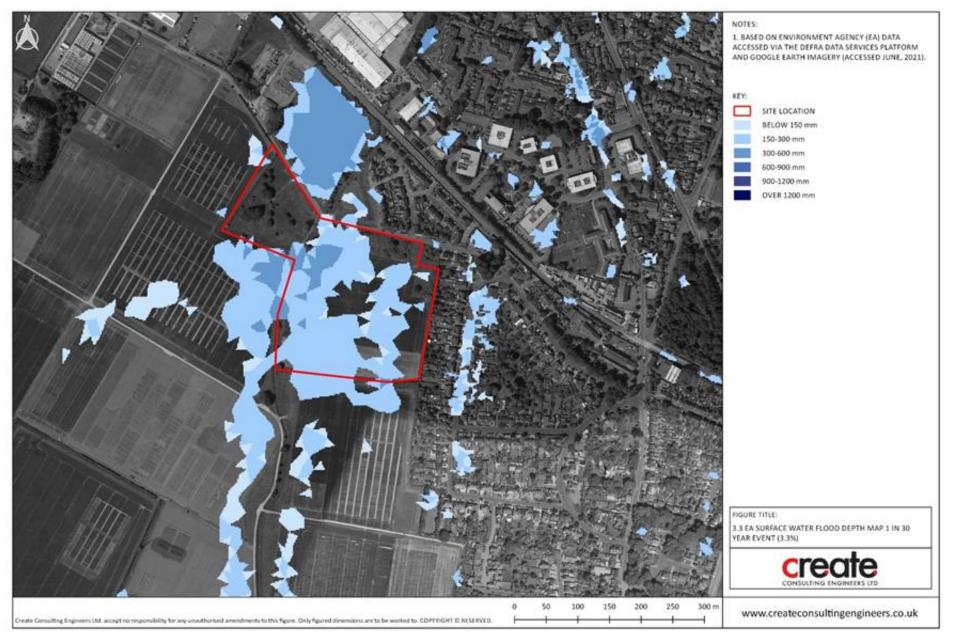


Figure 3.3: EA Surface Water Flood Depth Map 1 in 30 Year Event (3.3%)

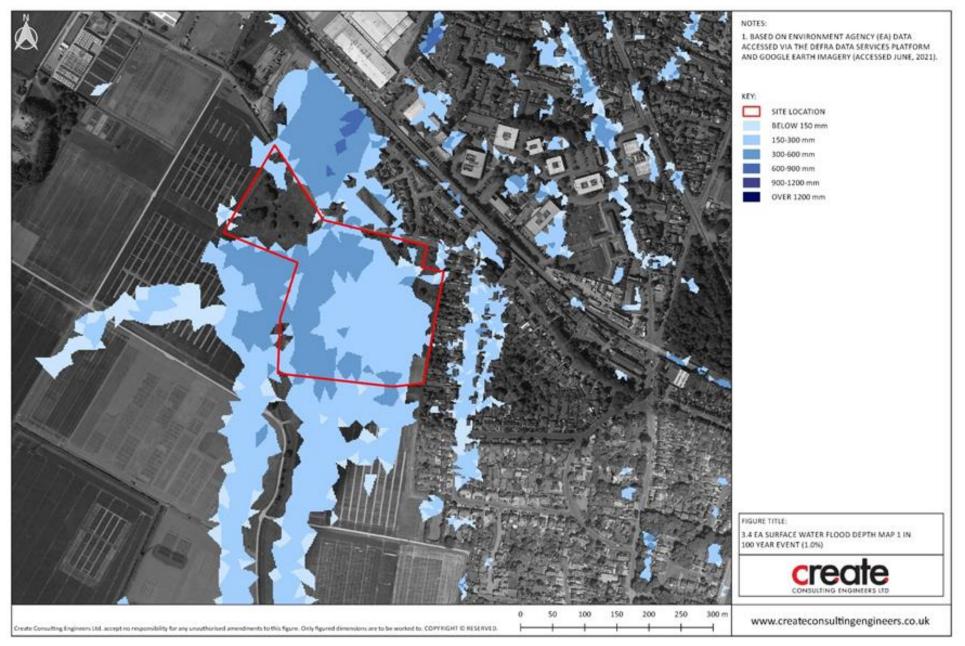


Figure 3.4: EA Surface Water Flood Depth Map 1 in 100 Year Event (1.0%)

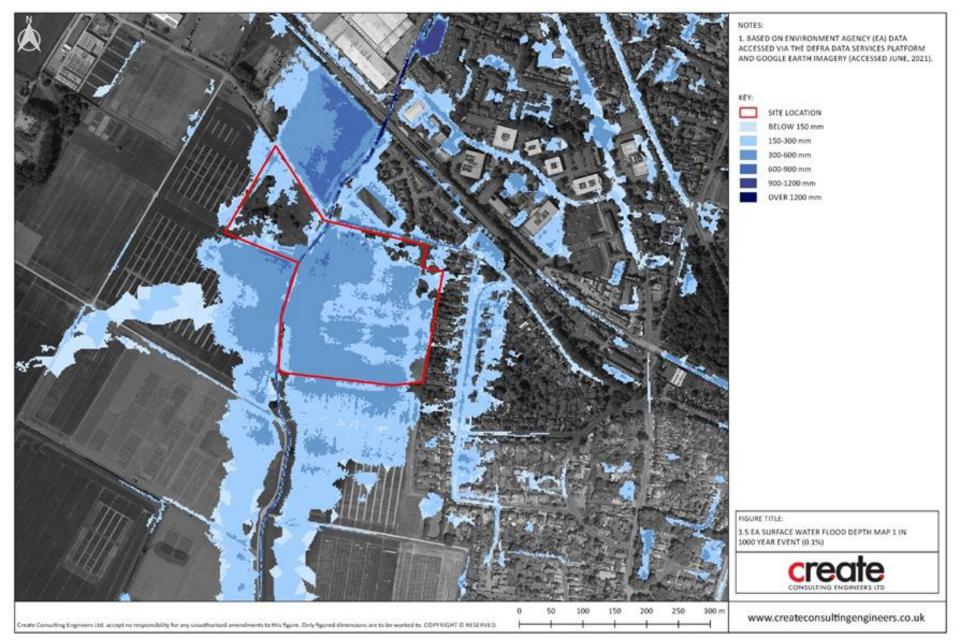


Figure 3.5: EA Surface Water Flood Depth Map 1 in 1000 Year Event (0.1%)

Figure 3.6: Modelled 1 in 100 Year + 65% Climate Change Flood Extent

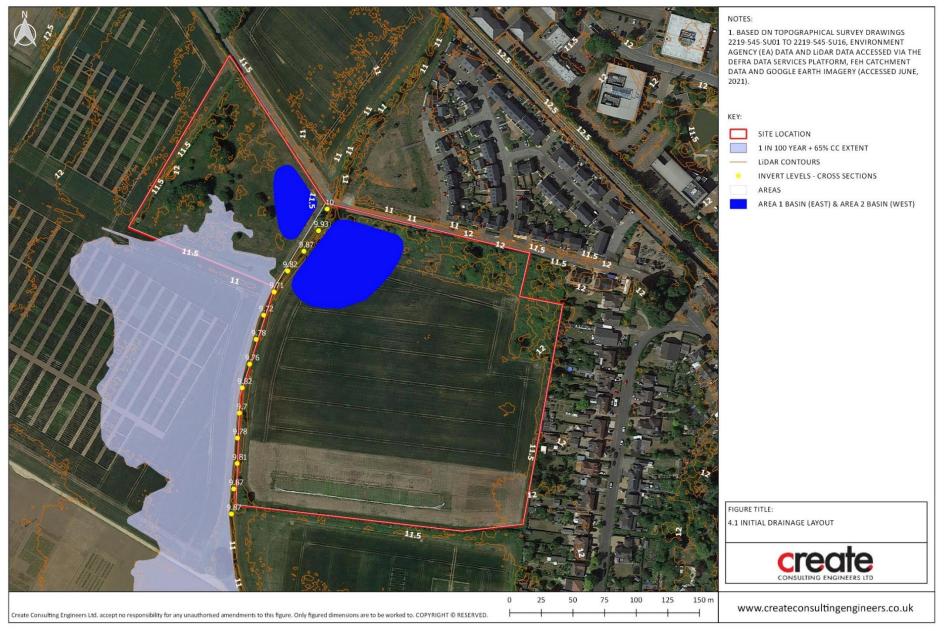
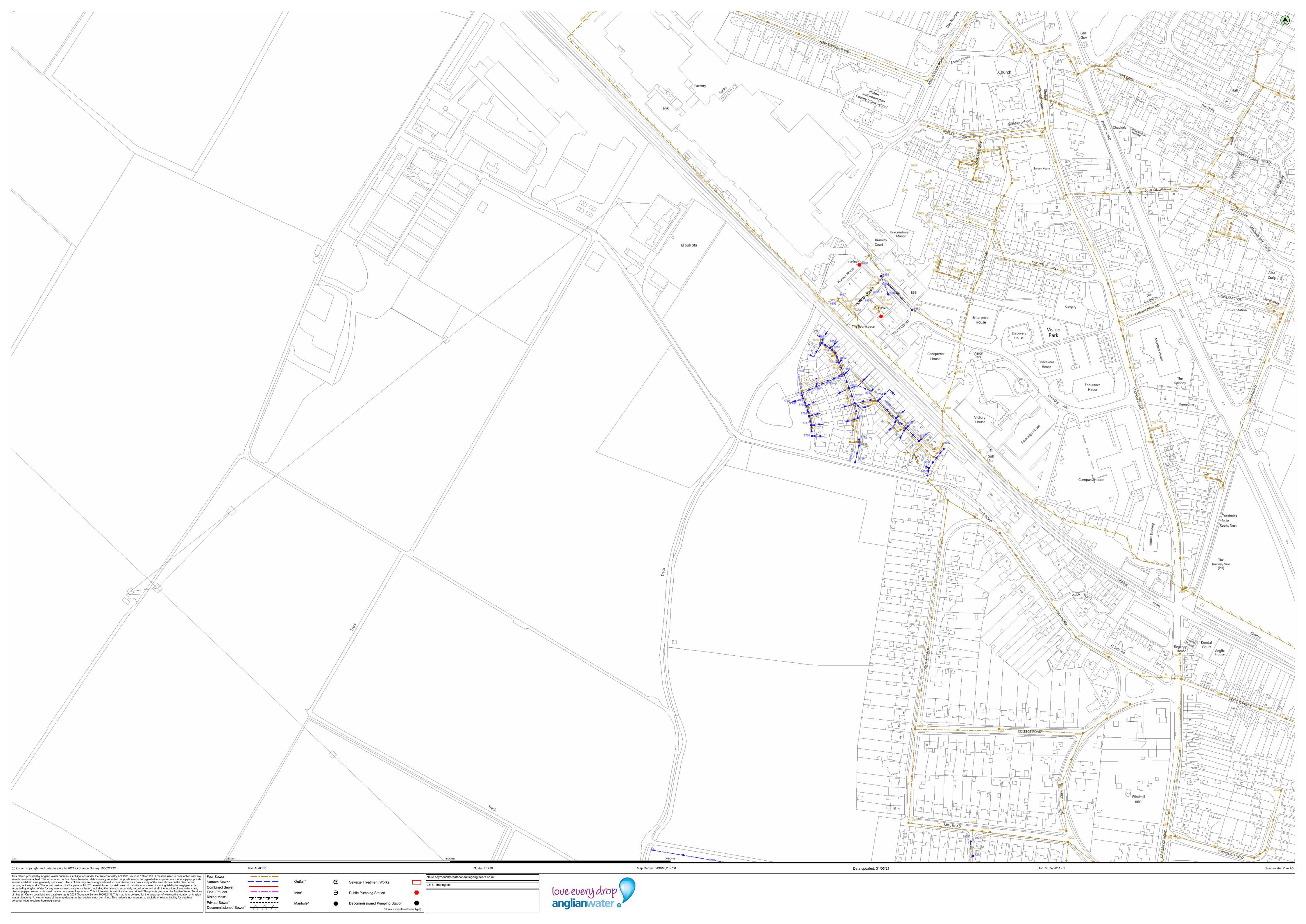



Figure 4.1: Initial Surface Water Drainage Layout

APPENDICES

APPENDIX A

Manhole Referer	ce Easting	Northing	Liquid T	ype Cover Lev	el Invert Leve	Depth to Invert
0001	544057	263086	F	10.829	8.379	2.45
0002 0003	544081 544051	263009 263077	F F	-	9.412	1.98 -
0004 0005	544010 544019	263074 263023	F F	-	-	-
0006 0101	544005 544045	263062 263169	F	- 10.664	- 8.144	- 2.52
0102 0103	544077 544094	263177 263147	F F	10.755 10.98	8.5 8.69	2.255 2.29
0104 0105	544063 544072	263116 263113	F F	-	-	-
)106)108	544078 544029	263111 263172	F	-	-	-
109	544021 544081	263170 262286	F	- 14.039	- 12.747	- 1.292
202 301	544083 544004	262273 262402	F	14.228 12.607	12.192	2.036
302	544099	262397	F	13.984	12.091	1.893
303 501	544074 544042	262338 262574	F	13.786 -	-	1.304 -
502 601	544092 544005	262506 262625	F F	-	-	-
901 902	544001 544010	262995 262936	F F	-	-	-
903 001	544078 544166	262923 263013	F F	- 11.717	- 10.057	- 1.66
002 101	544110 544110	263098 263156	F F	-	- 8.795	-
102 103	544125 544138	263156 263170	F	11.12 11.28	9.135 9.62	1.985 1.66
105 106	544176 544122	263132 263150	F	11.36 10.8	9.8 9.3	1.56 1.5
107	544127	263103 262280	F F	-	-	-
202 301	544193 544198	262306	F	-	-	-
401 402	544165 544153	262462 262430	F F	14.515 14.432	12.89 12.741	1.625 1.691
701 702	544179 544181	262728 262743	F F	-	-	-
703 801	544189 544141	262745 262865	F F		-	-
802 803	544145 544154	262849 262813	F	-	-	-
901 001	544128 544231	262908 263019	F	- 12.353	- 10.363	- 1.99
002	544235	263017	F	13.146	10.766	2.38
003 004	544260 544249	263005 263031	F F	13.768 12.45	10.968 10.195	2.8 2.255
005 006	544242 544269	263034 263074	F F	12.45 12.33	10.207 10.44	2.243 1.89
100 101	544298 544294	263172 263139	F F	-	-	-
201 202	544205 544294	262280 262255	F F	-	-	-
301 401	544210 544211	262377 262459	F	- 15.325	- 13.411	- 1.914
402 501	544210 544213	262487 262560	F F	14.978	13.692	1.286
502 601	544217 544208	262563 262633	F F	-	-	-
602	544259	262678	F	-	-	-
603 604	544241 544240	262692 262691	F F	-	-	-
605 606	544239 544253	262688 262685	F F	-	-	-
701 801	544289 544209	262774 262896	F F	-	-	-
901 902	544273 544276	262998 262994	F	-	-	-
903	544243	262958	F F	-	-	-
904 905	544255 544264	262966 262963	F	-	-	-
906 907	544279 544269	262959 262977	F F	-	-	-
101 102	544305 544338	263132 263119	F F	12.76 12.45	10.775 10.905	1.985 1.545
201 302	544307 544325	262264 262331	F	-	-	-
401 801	544301 544323	262425 262865	F F	16.039	13.792	2.247
802 803	544308 544327	262880 262874	F	-	-	-
804	544310	262885	F	-	-	-
101 202	543777 543707	263193 263219	F	11.119 11.656	9.525 9.906	1.594 1.75
700 701	543780 543779	262786 262794	F F	-	-	-
702 703	543792 543790	262744 262755	F F	-	-	-
704 800	543787 543800	262768 262841	F F	-	-	-
101 700	543852 543896	263165 262744	F	10.961	9.135 -	1.826 -
701 702	543864 543860	262774 262775	F	-	-	-
703	543839	262770	F	-	-	-
704 705	543842 543843	262752 262729	F F	-	-	-
800 801	543825 543816	262806 262830	F F	-	-	-
802 803	543817 543823	262828 262813	F F	-	-	-
810 900	543863 543872	262881 262917	F F	-	-	-
901 902	543856 543866	262940 262909	F F	-	-	-
001 002	543971 543924	263075 263088	F F	11.177	9.446 9.754	1.731
003	543982	263076	F	-	-	-
004 005	543981 543980	263058 263045	F F	-	-	-
010 013	543991 543973	263059 263048	F F	-	-	-
016 017	543959 543972	263047 263043	F F	-	-	-
018 019	543974 543977	263027 263038	F	-	-	-
101 102	543950 543923	263180 263139	F F	10.976 11.092	8.504 8.754	2.472 2.338
201	543901 543994	262295 262284	F F	-	- -	-
203	543974	262287	F	-	-	-
401 402	543923 543908	262492 262401	F	-	-	-
501 501	543932 543923	262566 262683	F F	-	-	-
502 701	543946 543940	262662 262764	F F	-	-	-
702 703	543938 543929	262720 262711	F F	-	-	-
704 705	543916 543940	262724 262726	F	-	-	-
801	543940 543975 543954	262726 262902 262806	F F	-	-	-
802 803	543960	262846	F	-	-	-
804 901	543909 543998	262877 262969	F	- 11.539	- 8.625	- 2.914
902 903	543945 543962	262987 262924	F F	11.64 -	10.29 -	1.35 -
904 905	543959 543947	262914 262918	F F	-	-	-
905 906 907	543933 543935	262918 262922 262927	F F	-	-	-
	543935 543937 543678	262933	F	-	-	
	0/136/8	262253	S	-	-	-
250 750	543767	262773	S	-	-	-
908 250 750 751 752 753		262773 262778 262784 262774	S S S S S	- -	- - -	- -

Manhole Referen		Northing	Liquid Ty	/pe Cover Le	vel Invert
7755 7756	543785 543788	262769 262758	S S	-	-
7757	543790	262747	S	-	-
7758 7850	543791 543776	262735 262802	S S	-	-
7851 8750	543802 543809	262841 262797	S S	-	-
8751	543833	262789	S	-	-
8752 8753	543840 543858	262772 262776	S S	-	-
8754	543866	262775	S	-	-
8755 8756	543887 543898	262755 262744	S S	-	-
8757	543843	262755	S	-	-
8758 8759	543840 543845	262705 262724	S S	-	-
8760 8850	543845 543822	262731 262803	S S	-	-
8851	543828	262805	S	-	-
8852 8853	543822 543818	262819 262830	S S	-	-
8854	543812	262835	S	-	-
8860 8952	543878 543870	262896 262917	S S	-	-
9252	543972	262274	S	-	-
9261 9650	543974 543923	262257 262690	S S	-	-
9651 9750	543924	262699 262729	S S	-	-
9750 9751	543913 543933	262729	S S	-	-
9752 9850	543941 543905	262721 262878	S S	-	-
	1				
					-

- -		Danth to Increase
-	Invert Level	Depth to Invert
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
	-	-
-	-	-
	-	-

e Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert

Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
<u> </u>					

APPENDIX B

IoH 124 Calculation of Greenfield Runoff Rate

Project:	P21-2315 Land at Impington, South Cambridgeshire								
Project.	Area 1								
OS Location	543729 E 262621 N								
Date:	16.06.21								
Written By:	Π	Checked	By:	GS					

Qbar_{rural} = 0.00108 x (AREA)0.89 X (SAAR)1.17 X (SOIL)2.17

Qbar-50ha = $0.067 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2	5	10	25	30	50	100	500
Growth Factor	0.85	0.89	1.29	1.65	2.25	2.37	2.83	3.56	5.02

Q ₁ 50ha =	0.057	m ³ /s	=	57.05	l/s	=	1.141	l/s/ha
Q ₂ 50ha =	0.060	m ³ /s	=	59.73	l/s	=	1.195	l/s/ha
Q₅ 50ha =	0.087	m ³ /s	=	86.58	l/s	=	1.732	l/s/ha
Q ₁₀ 50ha =	0.111	m³/s	=	110.74	l/s	=	2.215	l/s/ha
Q ₂₅ 50ha =	0.151	m ³ /s	=	151.01	l/s	=	3.020	l/s/ha
Q ₃₀ 50ha =	0.159	m³/s	=	159.06	l/s	=	3.181	l/s/ha
Q ₅₀ 50ha =	0.190	m³/s	=	189.94	l/s	=	3.799	l/s/ha
Q ₁₀₀ 50ha =	0.239	m³/s	=	238.93	l/s	=	4.779	l/s/ha
Q ₅₀₀ 50ha =	0.337	m³/s	=	336.92	l/s	=	6.738	l/s/ha

Factored for Development Impermeable Area

Site Area = 0.87

Q _{bar} site =	0.001	m ³ /s	=	1.2	l/s	=	1.3	l/s/ha
Q ₁ site =	0.001	m ³ /s	=	1.0	l/s	=	1.1	l/s/ha
Q ₂ site =	0.001	m ³ /s	=	1.0	l/s	=	1.2	l/s/ha
Q₅site =	0.002	m ³ /s	=	1.5	l/s	=	1.7	l/s/ha
Q ₁₀ site =		m ³ /s	=	1.9	l/s	=	2.2	l/s/ha
Q ₂₅ site =		m³/s	=	2.6	l/s	II	3.0	l/s/ha
Q ₃₀ site =		m ³ /s	=	2.8	l/s	=	3.2	l/s/ha
Q ₅₀ site =		m ³ /s	=	3.3	l/s	=	3.8	l/s/ha
Q ₁₀₀ site =		m ³ /s	=	4.2	l/s	=	4.8	l/s/ha
Q ₅₀₀ site =	0.006	m ³ /s	=	5.9	l/s	=	6.7	l/s/ha

Note: For greenfield site, the critical duration is generally not relevant and the prediction of the peak rate of runoff using IoH124 does not require consideration of storm duration.

IoH 124 Calculation of Greenfield Runoff Rate

Project:	P21-2315 Land at In	P21-2315 Land at Impington, South Cambridgeshire						
Area 2								
OS Location	543729	543729 E 262621 N						
Date:	16.06.21							
Written By:	Π	Checked	By:	GS				

Qbar_{rural} = 0.00108 x (AREA)0.89 X (SAAR)1.17 X (SOIL)2.17

Qbar-50ha = $0.067 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2	5	10	25	30	50	100	500
Growth Factor	0.85	0.89	1.29	1.65	2.25	2.37	2.83	3.56	5.02

Q ₁ 50ha =	0.057	m ³ /s	=	57.05	l/s	=	1.141	l/s/ha
Q ₂ 50ha =	0.060	m ³ /s	=	59.73	l/s	=	1.195	l/s/ha
Q₅ 50ha =	0.087	m ³ /s	=	86.58	l/s	=	1.732	l/s/ha
Q ₁₀ 50ha =	0.111	m ³ /s	=	110.74	l/s	=	2.215	l/s/ha
Q ₂₅ 50ha =	0.151	m ³ /s	=	151.01	l/s	=	3.020	l/s/ha
Q ₃₀ 50ha =	0.159	m ³ /s	=	159.06	l/s	=	3.181	l/s/ha
Q ₅₀ 50ha =	0.190	m³/s	=	189.94	l/s	=	3.799	l/s/ha
Q ₁₀₀ 50ha =	0.239	m³/s	=	238.93	l/s	=	4.779	l/s/ha
Q ₅₀₀ 50ha =	0.337	m³/s	=	336.92	l/s	=	6.738	l/s/ha

Factored for Development Impermeable Area

Site Area = 3.1

Q _{bar} site =		m ³ /s	=	4.2	l/s	=	1.3	l/s/ha
Q ₁ site =	0.004	m ³ /s	=	3.5	l/s	=	1.1	l/s/ha
Q ₂ site =	0.004	m ³ /s	=	3.7	l/s	=	1.2	l/s/ha
Q₅site =	0.005	m ³ /s	=	5.4	l/s	=	1.7	l/s/ha
Q ₁₀ site =		m ³ /s	=	6.9	l/s	=	2.2	l/s/ha
Q ₂₅ site =		m³/s	=	9.4	l/s	=	3.0	l/s/ha
Q ₃₀ site =		m ³ /s	=	9.9	l/s	=	3.2	l/s/ha
Q ₅₀ site =		m ³ /s	=	11.8	l/s	=	3.8	l/s/ha
Q ₁₀₀ site =		m ³ /s	=	14.8	l/s	=	4.8	l/s/ha
Q ₅₀₀ site =	0.021	m ³ /s	=	20.9	l/s	=	6.7	l/s/ha

Note: For greenfield site, the critical duration is generally not relevant and the prediction of the peak rate of runoff using IoH124 does not require consideration of storm duration.

APPENDIX C

Create Consulting						Page 1
15 Princes Street	P21-	2315 I	Land at	: Impin	ngton	
Norwich	Atte	nuatio	on Basi	n 1		and the second s
NR3 1AF	l in	100 1	vr + 40)용 CC -	+ 10% UC	Micco
Date 17/06/2021		.gned k				_ Micro
File Attenuation Basin 1, 1		ked by	-			Drainac
			-	010 1	1	
Innovyze	Sour	rce Cor	ntrol 2	2018.1	. 1	
Summary of Resu	lts for 10	10 vea	r Retur	rn Per	iod (+40%)	
Summary of Resu	105 101 1	JU yea	<u>r necu</u>		104 (1108)	
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth (Control	Volume		
	(m)	(m)	(l/s)	(m³)		
15 min Cur	nmer 10.776	0 216	2 5	1052.6	ОК	
	nmer 10.863			1354.0		
	nmer 10.949			1656.3		
	nmer 11.067			2082.3		
	nmer 11.138			2341.6	0 K	
	nmer 11.186			2518.1		
	nmer 11.245			2738.4		
	nmer 11.278			2862.8		
	nmer 11.298			2940.1		
	nmer 11.311			2990.8	0 K	
	nmer 11.326			3046.1		
1440 min Sur				3077.4		
2160 min Sur				3056.0		
2880 min Sur				3014.9		
4320 min Sur	nmer 11.297	0.837		2938.1		
5760 min Sur	nmer 11.279	0.819	3.5	2867.1	ОК	
7200 min Sur	nmer 11.267	0.807	3.5	2821.2	ОК	
8640 min Sur	nmer 11.262	0.802	3.5	2805.9	O K	
10080 min Sum	nmer 11.267	0.807	3.5	2823.4	O K	
Storm	Rain	Floode	d Disch	arge Ti	me-Peak	
Event	(mm/hr)	Volume	e Volu	ıme	(mins)	
		(m³)	(m ³	3)		
15 min Sum	mer 165.200	0.	0 3	00.9	19	
	mer 106.400			95.5	34	
60 min Sum	mer 65.240			79.4	64	
120 min Sum				23.4	124	
180 min Sum	mer 30.963	Ο.	0 5	03.8	184	
240 min Sum	mer 25.060	0.	0 5	13.0	244	
360 min Sum	mer 18.293	0.	0 5	30.7	364	
480 min Sum	mer 14.442	0.	0 5	40.5	484	
600 min Sum	mer 11.947	0.	0 5	46.5	604	
720 min Sum	mer 10.197	0.		50.5	724	
960 min Sum			0 5	54.9	964	
1440 min Sum				57.6	1442	
2160 min Sum	mer 3.770	0.	0 10	95.1	2164	
	mer 2.905			97.6	2884	
2880 min Sum		0	0 10	96.1	4320	
4320 min Sum						
4320 min Sum 5760 min Sum	mer 1.610	0.		24.2	5760	
4320 min Sum 5760 min Sum 7200 min Sum	mer 1.610 mer 1.358	0. 0.	0 21	29.6	6992	
4320 min Sum 5760 min Sum	mer 1.610 mer 1.358 mer 1.194	0. 0. 0.	0 21 0 21			

Create Consulting						Page 2
15 Princes Street	P21-	·2315 I	Land at	: Impin	ngton	
Norwich	Atte	nuatio	on Basi	n 1		
NR3 1AF	1 ir	1 100 T	yr + 40)% CC -	+ 10% UC	Micco
Date 17/06/2021		lgned k	-			Micro
File Attenuation Basin 1, 1 i		cked by	-			Drainac
_			-	010 1	1	
Innovyze	Sour	.ce cor	ntrol 2	.010.1	• ⊥	
Summary of Results	for 1	<u>00 yea</u>	r Retu	rn Per	iod (+40%)	
Storm	Max	Max	Max	Max	Status	
Event			Control			
	(m)	(m)	(1/s)	(m ³)		
	10 010	0 050	0 5			
15 min Winter				1179.4	OK	
30 min Winter 60 min Winter				1517.3 1856.7	ОК ОК	
60 min Winter 120 min Winter				2335.0	0 K	
120 min Winter 180 min Winter				2335.0	0 K	
240 min Winter 240 min Winter				2825.3		
360 min Winter				3074.6	0 K	
480 min Winter				3074.6	0 K	
600 min Winter				3305.6	0 K	
720 min Winter				3365.0	0 K	
960 min Winter				3432.4	0 K	
1440 min Winter				3432.4	O K	
2160 min Winter				3470.8	O K	
2880 min Winter				3441.5	0 K	
4320 min Winter				3389.6	O K	
5760 min Winter				3343.9	0 K	
7200 min Winter				3325.7		
8640 min Winter				3325.7		
10080 min Winter				3344.8	0 K	
Storm	Rain	Floode	d Disch	arge Ti	me-Peak	
Event	(mm/hr)	Volum	e Volu	ume	(mins)	
		(m³)	(m ³	3)		
15 min Winter	165.200	0.	0 2	99.3	19	
30 min Winter				90.5	34	
60 min Winter				59.3	64	
120 min Winter	41.160	0.	0 5	03.5	124	
180 min Winter	30.963	0.	0 5	20.2	182	
240 min Winter	25.060	0.	0 5	35.4	242	
360 min Winter	18.293	0.	0 5	53.4	362	
480 min Winter	14.442	0.	0 5	62.9	480	
600 min Winter	11.947	0.	0 5	68.6	598	
720 min Winter	10.197	0.	0 5	72.0	718	
960 min Winter	7.896	0.	0 5	75.1	954	
1440 min Winter	5.466		0 5	74.6	1428	
2160 min Winter	3.770		0 11	36.1	2136	
2880 min Winter	2.905	0.	0 11	34.0	2828	
4320 min Winter	2.041			22.7	4196	
	1.610	0.	0 21	98.2	5584	
5760 min Winter				0 F F	6912	
7200 min Winter	1.358			05.5		
	1.358 1.194 1.080	0.	0 22	05.5 04.8 95.0	8208 9384	

Create Consulting		Page 3
15 Princes Street	P21-2315 Land at Impington	
Norwich	Attenuation Basin 1	
NR3 1AF	1 in 100 yr + 40% CC + 10% UC	Micco
Date 17/06/2021	Designed by TT	— Micro
File Attenuation Basin 1, 1 i	Checked by GS	Drainage
		9
Innovyze	Source Control 2018.1.1	
<u>R</u>	ainfall Details	
Rainfall Mod		
Return Period (yea: FEH Rainfall Vers:	,	
	ion GB 543800 262900 TL 43800 62900 vpe Catchment	
Data T	11	
Summer Sto: Winter Sto:		
Cv (Summe		
Cv (Winte		
Shortest Storm (min		
Longest Storm (min		
Climate Change	e % +40	
Ti	ime Area Diagram	
То	tal Area (ha) 3.410	
:	Time (mins) Area	
F	rom: To: (ha)	
	0 4 3.410	

	lting						Pag	re 4
15 Princes S	Street			315 Land at		con		
Jorwich			Atten	uation Basi	.n 1			-
NR3 1AF			1 in 1	100 yr + 40)% CC + 2	LO% UC	M	icro
Date 17/06/2	2021		Design	ned by TT				
File Attenua	ation Basi	n 1. 1 i.	Checke	ed by GS			U	ainag
Innovyze				e Control 2	2018.1.1			-
			<u>Model I</u>	<u>Details</u>				
		Storage i	ls Online Co	over Level (m) 11.760			
		<u>T</u>	ank or Pon	d Structur	<u>e</u>			
			Invert Level	l (m) 10.460				
		Depth (m		Depth (m) A	rea (m²)			
		0.00	0 3223.9	1.300	4141.3			
		Hydro-Bra	ake® Optim	uum Outflow	Control			
		-	Unit Refere Design Head	nce MD-SHE-0	087-3500-3	1.100-3500 1.100		
			sign Flow (l			3.5		
		Det	Flush-F		Ca	alculated		
				ive Minimis				
			Applicat	ion	-	Surface		
			Sump Availa	ble		Yes		
			Diameter (87		
			nvert Level	. ,		10.360		
		-	e Diameter (100 1200		
	suggest	.ed Mainoite	e Diameter (11011)		1200		
		Head (m)	Flow (l/s)	Contro	l Points	Head	(m) F	low (l/s
Control	Points				Kick-	Flo® 0	601	2.
		1.100 M 0.329		Mean Flow ov			-	
Design Point The hydrolog	(Calculated) Flush-Flo ^m gical calculo	M 0.329 ations hav	3.5 e been based	' l on the Head	ver Head R /Discharg	ange e relation	- ship f	3. or the
Design Point The hydrolog Hydro-Brake®	(Calculated) Flush-Flo ^m gical calcul Optimum as	M 0.329 ations hav specified	3.5 e been based . Should ar	I	ver Head R //Discharg of control	ange e relation device ot	- ship f her th	3. Or the an a
Design Point The hydrolog Hydro-Brake Hydro-Brake	(Calculated) Flush-Flo ^m gical calcul Optimum as Optimum® be	O.329 ations hav specified utilised	3.5 e been based . Should ar then these s	' d on the Head nother type o	ver Head R //Discharg f control ng calcul	ange e relation device ot ations wil	- ship f her th l be i	3. or the an a nvalidat
Design Point The hydrolog Hydro-Brake® Hydro-Brake	(Calculated) Flush-Flo ^m gical calcul Optimum as Optimum® be	O.329 ations hav specified utilised	3.5 e been based . Should ar then these s	d on the Head nother type c storage routi	ver Head R //Discharg f control ng calcul	ange e relation device ot ations wil	- ship f her th l be i	3. or the an a nvalidat
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m)	(Calculated) Flush-Flo ^m gical calcula Optimum as Optimum® be Flow (l/s)	 * 0.329 ations hav specified utilised Depth (m) 	3.5 e been based . Should ar then these s Flow (1/s) 3.6	d on the Head nother type o storage routi Depth (m) F	ver Head R //Discharg f control ng calcul low (l/s)	ange e relation device ot ations wil Depth (m)	- ship f her th l be i	3. or the an a nvalidat (1/s)
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100	(Calculated) Flush-Flom gical calcula Optimum as Optimum® be Flow (1/s) 2.7	 * 0.329 ations hav specified utilised Depth (m) 1.200 	3.5 e been based . Should ar then these s Flow (1/s) 3.6 3.9	d on the Head nother type o storage routi Depth (m) F: 3.000	ver Head R I/Discharg of control ng calcul Low (l/s) 5.6	ange e relation device ot ations wil Depth (m) 7.000	- ship f her th l be i	3. or the an a nvalidat (1/s) 8.3
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200	(Calculated) Flush-Flom gical calcula Optimum as Optimum® be Flow (1/s) 2.7 3.4	 * 0.329 ations hav specified utilised Depth (m) 1.200 1.400 	3.5 e been based . Should ar then these s Flow (1/s) 3.6 3.9 4.2	d on the Head nother type o storage routi Depth (m) F: 3.000 3.500	ver Head R I/Discharg of control ng calcul Low (l/s) 5.6 6.0	ange e relation device ot ations wil Depth (m) 7.000 7.500	- ship f her th l be i	3. for the an a nvalidat (1/s) 8.3 8.6
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300	(Calculated) Flush-Flom gical calcula Optimum as Optimum® be Flow (1/s) 2.7 3.4 3.5	 * 0.329 ations hav specified utilised Depth (m) 1.200 1.400 1.600	3.5 e been based . Should ar then these s Flow (1/s) 3.6 3.9 4.2 4.4	d on the Head nother type o storage routi Depth (m) F: 3.000 3.500 4.000	Ver Head R I/Discharg of control ng calcul Low (1/s) 5.6 6.0 6.4	ange e relation device ot ations wil Depth (m) 7.000 7.500 8.000	- ship f her th l be i	3. for the an a nvalidat (1/s) 8.3 8.6 8.9
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600	(Calculated) Flush-Flom gical calcula Optimum as Optimum® be Flow (1/s) 2.7 3.4 3.5 3.5 3.4 3.2	<pre>* 0.329 ations hav specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200</pre>	3.5 e been based . Should ar then these s Flow (1/s) 3.6 3.9 4.2 4.4 4.6 4.8	d on the Head nother type o storage routi Depth (m) F: 3.000 3.500 4.000 4.500 5.000 5.500	ver Head R I/Discharg of control ng calcul Low (1/s) 5.6 6.0 6.4 6.7	ange e relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500	- ship f her th l be i	3. for the an a nvalidat (1/s) 8.3 8.6 8.9 9.1
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	(Calculated) Flush-Flom gical calcula Optimum as Optimum® be Flow (1/s) 2.7 3.4 3.5 3.5 3.4 3.2 3.0	<pre>* 0.329 ations hav specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.5 e been based . Should ar then these s Flow (1/s) 3.6 3.9 4.2 4.4 4.6 4.8 5.0	d on the Head nother type o storage routi 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>Ver Head R //Discharg f control ng calcul low (1/s) 5.6 6.0 6.4 6.7 7.1 7.4 7.7</pre>	ange e relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000	- ship f her th l be i	3. for the an a nvalidat (1/s) 8.3 8.6 8.9 9.1 9.1 9.4
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600	(Calculated) Flush-Flom gical calcula Optimum as Optimum® be Flow (1/s) 2.7 3.4 3.5 3.5 3.4 3.2 3.0	<pre>* 0.329 ations hav specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200</pre>	3.5 e been based . Should ar then these s Flow (1/s) 3.6 3.9 4.2 4.4 4.6 4.8 5.0	d on the Head nother type o storage routi 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>Ver Head R //Discharg f control ng calcul low (1/s) 5.6 6.0 6.4 6.7 7.1 7.4</pre>	ange e relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000	- ship f her th l be i	3. for the an a nvalidat (1/s) 8.3 8.6 8.9 9.1 9.1 9.4
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	(Calculated) Flush-Flom gical calcula Optimum as Optimum® be Flow (1/s) 2.7 3.4 3.5 3.5 3.4 3.2 3.0	<pre>* 0.329 ations hav specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.5 e been based . Should ar then these s Flow (1/s) 3.6 3.9 4.2 4.4 4.6 4.8 5.0	d on the Head nother type o storage routi 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>Ver Head R //Discharg f control ng calcul low (1/s) 5.6 6.0 6.4 6.7 7.1 7.4 7.7</pre>	ange e relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000	- ship f her th l be i	3. for the an a nvalidat (1/s) 8.3 8.6 8.9 9.1 9.1 9.4
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	(Calculated) Flush-Flom gical calcula Optimum as Optimum® be Flow (1/s) 2.7 3.4 3.5 3.5 3.4 3.2 3.0	<pre>* 0.329 ations hav specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.5 e been based . Should ar then these s Flow (1/s) 3.6 3.9 4.2 4.4 4.6 4.8 5.0	d on the Head nother type o storage routi 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>Ver Head R //Discharg f control ng calcul low (1/s) 5.6 6.0 6.4 6.7 7.1 7.4 7.7</pre>	ange e relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000	- ship f her th l be i	3. for the an a nvalidat (1/s) 8.3 8.6 8.9 9.1 9.1 9.4

Create Consulting						Page 1
15 Princes Street	P21-	-2315 I	Land at	Impin	ngton	
Norwich	Atte	enuatio	on Basi	.n 2		-
NR3 1AF	1 in	n 100 v	yr + 40	PS CC −	⊦ 10% UC	Micco
Date 17/06/2021		.gned k				— Micro
File Attenuation Basin 2, 1		cked by	-			Draina
			ntrol 2	010 1	1	
Innovyze	5001	.ce cor	ILFOI Z	010.1	• ⊥	
Summary of Res	ults for 1	00 yea	r Retu	rn Per	iod (+40%)	<u>_</u>
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth (Control	Volume		
	(m)	(m)	(1/s)	(m³)		
	ummer 10.461		0.8			
	ummer 10.551 ummer 10.638		0.8 0.8			
	ummer 10.838		0.8			
	ummer 10.755		0.8			
	ummer 10.871		0.9			
	ummer 10.927		0.9			
	ummer 10.927		0.9			
	ummer 10.979		0.9			
	ummer 10.992		0.9			
	mmer 11.006		1.0			
1440 min Su	mmer 11.016	0.896	1.0			
2160 min Su	ummer 11.013	0.893	1.0	869.2	ОК	
2880 min Su	ummer 11.005	0.885	1.0	860.1	ОК	
4320 min Su	ummer 10.990	0.870	0.9	842.9	ОК	
5760 min Su	mmer 10.975	0.855	0.9	826.3	O K	
7200 min Su	ummer 10.966	0.846	0.9	816.3	0 K	
8640 min Su	ummer 10.965	0.845	0.9	815.0	0 K	
10080 min Su	ummer 10.971	0.851	0.9	821.2	O K	
Sh arm	Daia	TI a a da	d Dissh	m :	ma Dach	
Storm Event	Rain	Floode		-	me-Peak (mins)	
Lvent	(1001/112)	(m ³)	e voiu (m ³		(
15 min Su	mmer 165.200	0.	0 .	57.4	19	
30 min Su	mmer 106.400	0.	0	61.0	34	
60 min Su	mmer 65.240	Ο.	0 1	27.4	64	
120 min Su	mmer 41.160	0.	0 1	38.3	124	
180 min Su				44.2	184	
240 min Su				47.8	244	
360 min Su				51.9	364	
480 min Su				53.8	484	
600 min Su				54.7	604	
720 min Su				55.1	724	
960 min Su 1440 min Su				55.0	964	
1440 min Su 2160 min Su				53.1	1442	
2160 min Su 2880 min Su				05.5	2164	
2880 min Su 4320 min Su				02.6	2880	
4320 min Su 5760 min Su				95.5	4320 5760	
5760 min Su 7200 min Su				88.1 87.1	5760 6848	
7200 min Su 8640 min Su				84.3	7440	
10080 min Su						
10080 min Su				79.1	8272	

Create Consulting	3							Page 2			
15 Princes Street	t		P21-	P21-2315 Land at Impington							
Norwich			Atte	Attenuation Basin 2							
NR3 1AF			1 ir	100 •	r + 40)% CC -	+ 10% UC	Mission			
Date 17/06/2021				.gned k			100 00	Micro			
				-	-			Drain			
File Attenuation	Basın	2, 1 1		ked by							
Innovyze			Sour	ce Cor	ntrol 2	2018.1	.1				
Sum	mary c	of Results	for 1	00 yea	r Retu	rn Per	iod (+40%)				
		Storm	Max	Max	Max	Max	Status				
		Event	Level		Control						
			(m)	(m)	(1/s)	(m³)					
	15	min Winter	10 199	0 379	0.8	332.2	ОК				
		min Winter			0.8						
		min Winter			0.8	523.2					
		min Winter			0.0	658.0					
		min Winter			0.9						
		min Winter			0.9						
		min Winter			1.0						
		min Winter			1.0						
		min Winter			1.0						
		min Winter min Winter			1.0						
		min Winter min Winter			1.0						
		min Winter									
					1.0						
		min Winter			1.0						
		min Winter			1.0						
		min Winter			1.0						
		min Winter			1.0						
		min Winter			1.0						
		min Winter min Winter			1.0						
	10080	min winter	11.102	0.982	1.0	972.7	O K				
		Storm	Rain	Floode	d Disch	arge Ti	.me-Peak				
		Event		Volume		-	(mins)				
				(m³)	(m ³	3)	·				
	15	min Winter	165.200	0.	0	58.2	19				
		min Winter				63.3	34				
		min Winter	65.240			32.7	64				
		min Winter				44.0	124				
		min Winter				50.0	182				
		min Winter				53.7	242				
		min Winter				57.8	362				
		min Winter				59.7	480				
		min Winter	11.947			60.5	598				
		min Winter	10.197			60.7	716				
		min Winter	7.896			60.2	954				
		min Winter	7.896 5.466			57.5	954 1428				
	144U	min willer	5.466 3.770								
	21.00	min Tolinter	5.770	0.		16.1	2136 2824				
		min Winter		^	∩ ^		/ 0/ 4				
	2880	min Winter	2.905			12.0					
	2880 4320	min Winter min Winter	2.905 2.041	0.	0 3	01.9	4196				
	2880 4320 5760	min Winter min Winter min Winter	2.905 2.041 1.610	0. 0.	0 3 0 6	01.9 09.0	4196 5544				
	2880 4320 5760 7200	min Winter min Winter min Winter min Winter	2.905 2.041 1.610 1.358	0. 0. 0.	0 3 0 6 0 6	01.9 09.0 05.0	4196 5544 6848				
	2880 4320 5760 7200 8640	min Winter min Winter min Winter	2.905 2.041 1.610	0. 0. 0.	0 3 0 6 0 6 0 5	01.9 09.0	4196 5544				

Create Consulting		Page 3
15 Princes Street	P21-2315 Land at Impingto	on [
Norwich	Attenuation Basin 2	
NR3 1AF	1 in 100 yr + 40% CC + 10	
Date 17/06/2021	Designed by TT	
File Attenuation Basin 2, 1 i.		Drainage
Innovyze	Source Control 2018.1.1	
	Doinfall Dotaile	
	<u>Rainfall Details</u>	
Rainfall		FEH
Return Period (y		100
FEH Rainfall Ve		2013
	ation GB 543800 262900 TL 43800 6	
Data Summer S	Type Catch	Yes
Winter S		Yes
Cv (Su		.750
Cv (Vi Cv (Wi		.840
Shortest Storm (15
Longest Storm (0080
Climate Cha	nge %	+40
	<u>Time Area Diagram</u>	
	Total Area (ha) 0.960	
	Time (mins) Area From: To: (ha)	
	0 4 0.960	
	01982-2018 Innovyze	

create Consul	-										Pa	.ge 4
.5 Princes St	treet					315 Land			ton			
Iorwich						lation B						Ly.
IR3 1AF						100 yr +		CC +	10% U	С	N	licro
ate 17/06/20	021			Ι	Design	ned by T	Г				ň	rainag
'ile Attenua	tion Basi	n 2, 1	. i.	(Checke	ed by GS						rainay
nnovyze				2	Source	e Contro	1 20	18.1.1				
				Mc	del I	<u>Details</u>						
		Stora	ge i	s Onl	ine Cc	ver Level	(m)	11.420				
			<u>T</u> a	ank o	<u>r Pon</u>	d Struct	ure					
				Invert	: Level	L (m) 10.1	20					
		Depth	1 (m)) Area	1 (m²)	Depth (m)	Are	a (m²)				
		C	.000	C	808.8	1.300	I	1322.2				
		<u>Hydro</u>	-Bra	ake®	Optim	um Outfl	OW (Control	-			
						nce MD-SH	E-004	16-1000-				
				2	Head					100 1.0		
			Des	-	low (l lush-F			C	alcula			
						ive Mini	nise					
				-	plicat				Surf	ace		
				-	Availa					Yes		
			Tr		eter (Level	,			10.	46 020		
	Minimum (Dutlet							10.	75		
	Suggest	ed Man	hole	e Diam	eter (mm)			1	200		
Control 1	Points	Head	(m)	Flow	(1/s)	Con	trol	Points	I	lead	(m)	Flow (1/s
Design Point ((Calculated) Flush-Flo ^r				1.0 0.8	Mean Flow	ove		-Flo® Range		.408 -	0.
The hydrologi												
Hydro-Brake® Hydro-Brake (
Depth (m)	Flow (l/s)	Depth	(m)	Flow	(1/s)	Depth (m)	Flc	w (l/s)	Depth	(m)	Flow	(1/s)
0.100	0.7		200		1.0	3.000		1.6	1	.000		2.3
0.200	0.8		400		1.1	3.500		1.7		.500		2.4
0.300	0.8		600		1.2	4.000		1.8		.000		2.5
0.400	0.7		800		1.2 1.3	4.500		1.9 2.0		.500		2.5 2.6
	0.7		200		1.4	5.500		2.0	1	.500		2.0
0.500			400		1.4	6.000		2.2				L • 1
	0.9							2.2	1			
0.500 0.600			600		1.5	6.500		2.2				
0.500 0.600 0.800	0.9		600		1.5	6.500		2.2				